Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Brahim Ayed,* Anissa Haj Abbdallah and Amor Hadded

Départament de Chimie, Faculté des Sciences de Monastir, 5000 Monastir, Tunisie

Correspondence e-mail: brahimayed@yahoo.fr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{Mn}-\mathrm{O})=0.006 \AA$
R factor $=0.037$
$w R$ factor $=0.111$
Data-to-parameter ratio $=12.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

$\mathrm{RbMn}_{\mathbf{6}}\left(\mathrm{As}_{\mathbf{2}} \mathrm{O}_{7}\right)_{\mathbf{2}}\left(\mathrm{As}_{3} \mathrm{O}_{10}\right)$: a new manganese(II) arsenate

Single crystals of rubidium manganese arsenate, RbMn_{6} $\left(\mathrm{As}_{2} \mathrm{O}_{7}\right)_{2}\left(\mathrm{As}_{3} \mathrm{O}_{10}\right)$, have been prepared by a solid-state reaction at 1173 K . The compound crystallizes in the monoclinic system, space group $P 2_{1} / m$. The structure consists of a complex network of edge-sharing MnO_{6} octahedra, forming folded layers that are linked together by $\mathrm{As}_{2} \mathrm{O}_{7}$ and $\mathrm{As}_{3} \mathrm{O}_{10}$ groups, which is highly unusual. This arrangement delimits a tunnel parallel to the a-axis direction which accommodates Rb^{+}.

Comment

Transition metal oxide chemistry involving silicate, phosphate and arsenate oxyanions has attracted much attention because of their varied framework structures, which have interesting properties in terms of basic science as well as applied research. For example, the Nasicon tunnel structure, $\mathrm{NaZr}_{2}\left(\mathrm{PO}_{4}\right)_{3}$, discovered by Hagman \& Kierkegaard (1968), shows interesting ionic conduction properties, whereas the non-linear optical phosphate, KTiOPO_{4}, is known for its second harmonic generation properties (Tordjman et al., 1974). In an attempt to find similar materials with both octahedra and tetrahedra, we have extended our investigations to the system $\mathrm{Rb}_{2} \mathrm{O}-\mathrm{MnO}-\mathrm{As}_{2} \mathrm{O}_{5}$. The choice of manganese is of particular interest because of its various oxidation states, ranging from II to VII. To our knowledge, rubidium manganese arsenates are rare and up to now only $\mathrm{RbMn}_{4}\left(\mathrm{AsO}_{4}\right)_{3}$ (Richard et al., 1996) has been reported.

A new manganese(II) arsenate, $\mathrm{RbMn}_{6}\left(\mathrm{As}_{2} \mathrm{O}_{7}\right)_{2}\left(\mathrm{As}_{3} \mathrm{O}_{10}\right)$, has been prepared by a conventional solid-state reaction and characterized by single-crystal X-ray diffraction. The structure is composed of chains of edge-sharing MnO_{6} octahedra running along the b axis, generated by mirror planes containing the shared edge between two ${\mathrm{Mn} 3 \mathrm{O}_{6}}^{\text {octahedra }}$

Figure 1
A projection of the structure down c, showing how Mn3 atoms link the $\mathrm{Mn} 1-\mathrm{Mn} 2$ chains into sheets.

Received 5 February 2004 Accepted 26 February 2004 Online 6 March 2004

A projection of the $\mathrm{RbMn}_{6}\left(\mathrm{As}_{2} \mathrm{O}_{7}\right)_{2}\left(\mathrm{As}_{3} \mathrm{O}_{10}\right)$ structure, showing the single type of tunnel containing Rb^{+}cations.
and centres of symmetry on the shared edges between two $\mathrm{Mn1O}_{6}$ octahedra (Figs. 1 and 2). These chains are linked by an edge shared between ${\mathrm{Mn} 1 \mathrm{O}_{6}}$ and $\mathrm{Mn}_{2} \mathrm{O}_{6}$ to form puckered layers perpendicular to the c axis. The layers are linked into a network by $\mathrm{As}_{2} \mathrm{O}_{7}$ and $\mathrm{As}_{3} \mathrm{O}_{10}$ groups, leaving channels that contain the Rb atoms. A projection of the structure along the [100] direction is shown in Fig. 2. Each diarsenate group is formed by two tetrahedra, ${\mathrm{As} 1 \mathrm{O}_{4} \text { and } \mathrm{As} 2 \mathrm{O}_{4} \text {, interconnected }}_{\text {a }}$ through the corner (atom O13). The As1 tetrahedron shares three of its four remaining O -atom corners with three different $\mathrm{Mn}_{2} \mathrm{O}_{10}$ dimers belonging to two layers, and the As2 tetrahedron shares two of the remaining O atoms with two $\mathrm{Mn}_{2} \mathrm{O}_{10}$ groups and the third with the ${\mathrm{Mn} 3 \mathrm{O}_{6}}^{0}$ group; the $\mathrm{O} 6-$ As1 \cdots As2-O3 pseudo-torsion angle is $60.06(2)^{\circ}$, the As1$\mathrm{O} 13-\mathrm{As} 2$ angle is $150.23(2)^{\circ}$ and the As-O13 bridge distance is, as expected, longer than the terminal distances; the mean values in the tetrahedra agree with the literature. Each $\mathrm{As}_{3} \mathrm{O}_{10}$ group connects three pairs of $\mathrm{Mn3}_{2} \mathrm{O}_{10}$ belonging to two layers (Fig. 3). The terminal AsO_{4} groups of $\mathrm{As}_{3} \mathrm{O}_{10}$ are eclipsed by the central arsenate group; the As $4 \cdots$ As $3 \cdots$ As $4^{\text {ix }}$ angle is $95.26(2)^{\circ}$ and the $\mathrm{O} 10-$ As $4 \cdots$ As3-O7 pseudotorsion angle is $5.92(4)^{\circ}$. The mean As4 $-\mathrm{O}_{\text {terminal }}$ distance is 1.663 (2) \AA and the mean As $-\mathrm{O}_{\text {bridging }}$ distance is 1.761 (1) \AA. The Mn atoms are surrounded by six O atoms, with mean $\mathrm{Mn} 1-\mathrm{O}, \mathrm{Mn} 2-\mathrm{O}$ and $\mathrm{Mn} 3-\mathrm{O}$ distances of 2.226 (3), 2.205 (5) and 2.206 (5) Å, respectively, whereas the $\mathrm{O}-\mathrm{Mn}$ O angles range from 70.9 (3) to 119.8 (2) ${ }^{\circ}$. The Rb^{+}ions are located on centres of symmetry and exhibit tenfold coordination, with eight $\mathrm{Rb}-\mathrm{O}$ distances lying between 2.846 (6) and 3.090 (7) \AA and two other neighbours at distances of 3.456 (7) A. Bond-valence calculations (Brown \& Altermatt, 1985) based on these ten O-atom distances give an effective bond valence of 1.27 , consistent with the cation charge of +1 .

Experimental

The starting materials for synthesizing $\mathrm{RbMn}_{6}\left(\mathrm{As}_{2} \mathrm{O}_{7}\right)_{2}\left(\mathrm{As}_{3} \mathrm{O}_{10}\right)$ were $\mathrm{RbNO}_{3}, \mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{AsO}_{4}$ and $\mathrm{Mn}\left(\mathrm{SO}_{4}\right) \cdot \mathrm{H}_{2} \mathrm{O}$. A mixture with an $\mathrm{Rb} / \mathrm{Mn} / \mathrm{As}$ ratio of 1:4:4 was heated slowly in a platinum crucible, first at 573 K for 4 h to eliminate $\mathrm{NH}_{3}, \mathrm{NO}_{2}, \mathrm{H}_{2} \mathrm{O}$ and SO_{2}, and then at 1173 K for 20 h , and then cooled down to room temperature at a rate of $10 \mathrm{~K} \mathrm{~h}^{-1}$. The prismatic crystals obtained after washing with hot water were colourless. Qualitative analysis of these crystals, by electron microscope probe, revealed that they contain Ru, Mn and As.

Crystal data

$\mathrm{As}_{7} \mathrm{Mn}_{6} \mathrm{O}_{24} \mathrm{Rb}$
$M_{r}=1323.53$
Monoclinic, $P 2_{1} / m$
$a=5.555$ (1) \AA
$b=27.830(9) \AA$
$c=6.842(2) \AA$
$\beta=107.56(2)^{\circ}$
$V=1008.5(5) \AA^{3}$
$Z=2$

Data collection

Enarf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.363, T_{\text {max }}=0.495$
2461 measured reflections
2240 independent reflections
1726 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.111$
$S=1.09$
2240 reflections
179 parameters
$D_{x}=4.358 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=1.5-27.0^{\circ}$
$\mu=17.56 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.10 \times 0.05 \times 0.04 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.079 \\
& \theta_{\max }=27.0^{\circ} \\
& h=0 \rightarrow 7 \\
& k=0 \rightarrow 35 \\
& l=-8 \rightarrow 8 \\
& 2 \text { standard reflections } \\
& \quad \text { frequency: } 120 \mathrm{~min} \\
& \quad \text { intensity decay: } 0.4 \%
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0524 P)^{2}\right. \\
& +3.8056 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}<0.001 \\
& \Delta \rho_{\max }=1.58 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.47 \mathrm{e} \mathrm{~A}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0007 \text { (2) }
\end{aligned}
$$

Table 1
Selected geometric parameters (\AA).

As1-O2	1.674 (6)	$\mathrm{Rb}-\mathrm{O} 8^{\text {iii }}$	3.456 (6)
As1-O9	1.679 (6)	$\mathrm{Mn} 1-\mathrm{O} 9^{\text {vi }}$	2.143 (6)
As1-O3	1.681 (5)	$\mathrm{Mn} 1-\mathrm{O}^{\text {vii }}$	2.175 (6)
As1-O13	1.733 (6)	$\mathrm{Mn} 1-\mathrm{O} 2^{\text {viii }}$	2.189 (6)
As2-O12	1.661 (6)	$\mathrm{Mn} 1-\mathrm{O} 1^{\text {ix }}$	2.235 (6)
As2-O1 ${ }^{\text {i }}$	1.680 (5)	$\mathrm{Mn} 1-\mathrm{O} 5^{\text {viii }}$	2.255 (6)
As2-O6	1.683 (5)	Mn1-O9	2.366 (6)
As2-O13	1.734 (6)	$\mathrm{Mn} 2-\mathrm{Of}^{\text {vii }}$	2.145 (6)
As3-O11	1.650 (8)	$\mathrm{Mn} 2-\mathrm{O}^{\text {vii }}$	2.156 (6)
As3-O4	1.658 (8)	$\mathrm{Mn} 2-\mathrm{O} 1^{\text {vii }}$	2.213 (5)
As3-O7 ${ }^{\text {ii }}$	1.721 (6)	$\mathrm{Mn} 2-\mathrm{O} 2$	2.217 (6)
As4-O10	1.656 (6)	$\mathrm{Mn} 2-\mathrm{O}^{\text {viii }}$	2.217 (6)
As4-O5	1.668 (5)	Mn2-O8	2.289 (6)
As4-O8	1.681 (5)	$\mathrm{Mn} 3-\mathrm{O} 10^{\text {i }}$	2.129 (6)
As4-O7	1.803 (6)	Mn3-O12	2.134 (6)
$\mathrm{Rb}-\mathrm{O} 10^{\text {iii }}$	2.846 (6)	Mn3-O8	2.185 (5)
$\mathrm{Rb}-\mathrm{O} 7$	2.971 (6)	$\mathrm{Mn} 3-\mathrm{O}^{\text {vii }}$	2.186 (6)
$\mathrm{Rb}-\mathrm{O} 11^{\text {iv }}$	2.980 (8)	Mn3-O11	2.251 (5)
$\mathrm{Rb}-\mathrm{O} 4^{\text {iv }}$	3.026 (8)	$\mathrm{Mn} 3-\mathrm{O}^{\text {vii }}$	2.351 (5)
$\mathrm{Rb}-\mathrm{O} 12^{\mathrm{v}}$	3.090 (6)		

Symmetry codes: (i) $x, y, 1+z$; (ii) $x, \frac{1}{2}-y, z$; (iii) $1+x, y, z$; (iv) $x, y, z-1$; (v) $x, \frac{1}{2}-y, z-1$; (vi) $-x, 1-y, 2-z$; (vii) $x-1, y, z$; (viii) $-x, 1-y, 1-z$; (ix) $1-x, 1-y, 1-z$.

Figure 3

A view showing the association between $\mathrm{As}_{3} \mathrm{O}_{10}$ and $\mathrm{Mn}_{2} \mathrm{O}_{10}$ moieties along the [100] direction.

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček \& Yordanov, 1992); cell refinement: CAD-4 EXPRESS; data reduction: MOLEN (Fair, 1990); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

References

Brandenburg, K. (1998). DIAMOND. Version 2.0. Crystal Impact GbR, Bonn, Germany.

Figure 4

A view showing the association between $\mathrm{As}_{3} \mathrm{O}_{10}$ and $\mathrm{Mn}_{2} \mathrm{O}_{10}$ moieties along the [001] direction.

Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
Fair, C. K. (1990). MOLEN. Enraf-Nonius, Delft, The Netherlands.
Hagman, L. \& Kierkegaard, P. (1968). Acta Chem. Scand. 22, 1822-1832.
Macíček, J. \& Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Richard, M., Tina, A. W. \& Shiou-Jyh, H. (1996). J. Solid State Chem. 125, 255260.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Tordjman, I., Masse, R. \& Guitel, J. C. (1974). Z. Kristallogr. 139, 103-115.

